Hypercubic Random Surfaces with Extrinsic Curvature

نویسنده

  • S. Bilke
چکیده

We analyze a model of hypercubic random surfaces with an extrinsic curvature term in the action. We find a first order phase transition at finite coupling separating a branched polymer from a stable flat phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crossover Between Weakly and Strongly Self-avoiding Random Surfaces

We investigate the crossover between weak and strong self-avoidance in a simulation of random surfaces with extrinsic curvature. We consider both dynamically triangulated and rigid surfaces with the two possible discretizations of the extrinsic curvature term. Submitted to Phys Lett B. In recent papers we have investigated the limits of weak [1] and strong [2] self-avoidance in both fixed and d...

متن کامل

The Phase Diagram of Fluid Random Surfaces with Extrinsic Curvature

We present the results of a large-scale simulation of a Dynamically Triangulated Random Surface with extrinsic curvature embedded in three-dimensional flat space. We measure a variety of local observables and use a finite size scaling analysis to characterize as much as possible the regime of crossover from crumpled to smooth surfaces. ROM2F-92-48 SU-HEP-4241-517 SCCS-357 hep-lat/9209020

متن کامل

The Phase Structure of Strings with Extrinsic Curvature

We examine a model of non-self-avoiding, fluctuating surfaces as a candidate continuum string theory of surfaces in three dimensions. This model describes Dynamically Triangulated Random Surfaces embedded in three dimensions with an extrinsic curvature dependent action. We analyze, using Monte Carlo simulations, the dramatic crossover behaviour of several observables which characterize the geom...

متن کامل

Smooth random surfaces from tight immersions?

We investigate actions for dynamically triangulated random surfaces that consist of a gaussian or area term plus the modulus of the gaussian curvature and compare their behavior with both gaussian plus extrinsic curvature and “Steiner” actions. Considerable effort has recently been devoted to exploring modifications of the discretized Polyakov partition function [1] for a random surface

متن کامل

The Theory of Dynamical Random Surfaces with Extrinsic Curvature

We analyze numerically the critical properties of a two-dimensional discretized random surface with extrinsic curvature embedded in a three-dimensional space. The use of the toroidal topology enables us to enforce the non-zero external extension without the necessity of defining a boundary and allows us to measure directly the string tension. We show that a phase transition from the crumpled ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999